Kinetic Modeling and Graphical Analysis of 18F-Fluoromethylcholine (FCho), 18F-Fluoroethyltyrosine (FET) and 18F-Fluorodeoxyglucose (FDG) PET for the Fiscrimination between High-Grade Glioma and Radiation Necrosis in Rats
نویسندگان
چکیده
BACKGROUND Discrimination between glioblastoma (GB) and radiation necrosis (RN) post-irradiation remains challenging but has a large impact on further treatment and prognosis. In this study, the uptake mechanisms of 18F-fluorodeoxyglucose (18F-FDG), 18F-fluoroethyltyrosine (18F-FET) and 18F-fluoromethylcholine (18F-FCho) positron emission tomography (PET) tracers were investigated in a F98 GB and RN rat model applying kinetic modeling (KM) and graphical analysis (GA) to clarify our previous results. METHODS Dynamic 18F-FDG (GB n = 6 and RN n = 5), 18F-FET (GB n = 5 and RN n = 5) and 18F-FCho PET (GB n = 5 and RN n = 5) were acquired with continuous arterial blood sampling. Arterial input function (AIF) corrections, KM and GA were performed. RESULTS The influx rate (Ki) of 18F-FDG uptake described by a 2-compartmental model (CM) or using Patlak GA, showed more trapping (k3) in GB (0.07 min-1) compared to RN (0.04 min-1) (p = 0.017). K1 of 18F-FET was significantly higher in GB (0.06 ml/ccm/min) compared to RN (0.02 ml/ccm/min), quantified using a 1-CM and Logan GA (p = 0.036). 18F-FCho was rapidly oxidized complicating data interpretation. Using a 1-CM and Logan GA no clear differences were found to discriminate GB from RN. CONCLUSIONS Based on our results we concluded that using KM and GA both 18F-FDG and 18F-FET were able to discriminate GB from RN. Using a 2-CM model more trapping of 18F-FDG was found in GB compared to RN. Secondly, the influx of 18F-FET was higher in GB compared to RN using a 1-CM model. Important correlations were found between SUV and kinetic or graphical measures for 18F-FDG and 18F-FET. 18F-FCho PET did not allow discrimination between GB and RN.
منابع مشابه
Correction: Kinetic Modeling and Graphical Analysis of 18F-Fluoromethylcholine (FCho), 18F-Fluoroethyltyrosine (FET) and 18F-Fluorodeoxyglucose (FDG) PET for the Fiscrimination between High-Grade Glioma and Radiation Necrosis in Rats
[This corrects the article DOI: 10.1371/journal.pone.0161845.].
متن کاملA Prospective Study Comparing Functional Imaging (18F-FDG PET) Versus Anatomical Imaging (Contrast Enhanced CT) in Dosimetric Planning for Non-small Cell Lung Cancer.
Objective(s): 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET-CT) is a well-used and established technique for lung cancer staging. Radiation therapy requires accurate target volume delineation, which is difficult in most cases due to coexisting atelectasis. The present study was performed to compare the 18F-FDG PET-CT with contrast enhanced computed tomogr...
متن کاملComparison between kinetic modelling and graphical analysis for the quantification of [18F]fluoromethylcholine uptake in mice
BACKGROUND Until now, no kinetic model was described for the oncologic tracer [18F]fluoromethylcholine ([18F]FCho), so it was aimed to validate a proper model, which is easy to implement and allows tracer quantification in tissues. METHODS Based on the metabolic profile, two types of compartmental models were evaluated. One is a 3C2i model, which contains three tissue compartments and two inp...
متن کاملEvaluation of Radiation Exposure to Staff and Environment Dose from [18F]-FDG in PET/CT and Cyclotron Center using Thermoluminescent Dosimetry
Background: PET/CT imaging using [18F]-FDG is utilized in clinical oncology for tumor detecting, staging and responding to therapy procedures. Essential consideration must be taken for radiation staff due to high gamma radiation in PET/CT and cyclotron center. The aim of this study was to assess the staff exposure regarding whole body and organ dose and to evaluate environment dose in PET/CT an...
متن کاملEvaluation of Simultaneous Dual-radioisotope SPECT Imaging Using 18F-fluorodeoxyglucose and 99mTc-tetrofosmin
Objective(s): Use of a positron emission tomography (PET)/single-photonemission computed tomography (SPECT) system facilitates the simultaneousacquisition of images with fluorine-18 fluorodeoxyglucose (18F-FDG) andtechnetium (99mTc)-tetrofosmin. However, 18F has a short half-life, and 511keV Compton-scattered photons are detected in the 99mTc energy window.Therefore, in this study, we aimed to ...
متن کامل